首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   326篇
  免费   11篇
  国内免费   1篇
  2021年   6篇
  2019年   10篇
  2018年   4篇
  2017年   7篇
  2016年   11篇
  2015年   6篇
  2014年   6篇
  2013年   75篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   4篇
  2008年   6篇
  2007年   5篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1998年   2篇
  1997年   6篇
  1996年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1987年   2篇
  1986年   7篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   9篇
  1979年   7篇
  1978年   8篇
  1977年   2篇
  1976年   7篇
  1975年   10篇
  1974年   6篇
  1973年   8篇
  1972年   5篇
  1971年   4篇
  1970年   5篇
  1969年   4篇
  1968年   5篇
  1967年   3篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
91.
In this paper, a branch-and-bound procedure is presented for treating the general knapsack problem. The fundamental notion of the procedure involves a variation of traditional branching strategies as well as the incorporation of penalties in order to improve bounds. Substantial computational experience has been obtained, the results of which would indicate the feasibility of the procedure for problems of large size.  相似文献   
92.
Optimal time-sequential fire-support strategies are studied through a two-person zero-sum deterministic differential game with closed-loop (or feedback) strategies. Lanchester-type equations of warfare are used in this work. In addition to the max-min principle, the theory of singular extremals is required to solve this prescribed-duration combat problem. The combat is between two heterogeneous forces, each composed of infantry and a supporting weapon system (artillery). In contrast to previous work reported in the literature, the attrition structure of the problem at hand leads to force-level-dependent optimal fire-support strategies with the attacker's optimal fire-support strategy requiring him to sometimes split his artillery fire between enemy infantry and artillery (counterbattery fire). A solution phenomnon not previously encountered in Lanchester-type differential games is that the adjoint variables may be discontinuous across a manifold of discontinuity for both players' strategies. This makes the synthesis of optimal strategies particularly difficult. Numerical examples are given.  相似文献   
93.
A model is developed which may be used to determine the expected total cost of quality control per inspection lot under acceptance sampling by variables where several characteristics are to be simultaneously controlled. Optimization of the model is accomplished through the application of a conventional search procedure. The sensitivity of the model and the optimum solution to the shape of the underlying probability distributions is discussed and associated analyses are presented through an example.  相似文献   
94.
This paper develops a mathematical theory for predicting force annihilation from initial conditions without explicitly computing force-level trajectories for deterministic Lanchester-type “square-law” áttrition equations for combat between two homogeneous forces with temporal variations in fire effectivenesses (as expressed by the Lanchester attrition-rate coefficients). It introduces a canonical auxiliary parity-condition problem for the determination of a single parity-condition parameter (“the enemy force equivalent of a friendly force of unit strength”) and new exponential-like general Lanchester functions. Prediction of force annihilation within a fixed finite time would involve the use of tabulations of the quotient of two Lanchester functions. These force-annihilation results provide further information on the mathematical properties of hyperbolic-like general Lanchester functions: in particular, the parity-condition parameter is related to the range of the quotient of two such hyperbolic-like general Lanchester functions. Different parity-condition parameter results and different new exponential-like general Lanchester functions arise from different mathematical forms for the attrition-rate coefficients. This theory is applied to general power attrition-rate coefficients: exact force-annihilation results are obtained when the so-called offset parameter is equal to zero; while upper and lower bounds for the parity-condition parameter are obtained when the offset parameter is positive.  相似文献   
95.
96.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
97.
This article proposes new location models for emergency medical service stations. The models are generated by incorporating a survival function into existing covering models. A survival function is a monotonically decreasing function of the response time of an emergency medical service (EMS) vehicle to a patient that returns the probability of survival for the patient. The survival function allows for the calculation of tangible outcome measures—the expected number of survivors in case of cardiac arrests. The survival‐maximizing location models are better suited for EMS location than the covering models which do not adequately differentiate between consequences of different response times. We demonstrate empirically the superiority of the survival‐maximizing models using data from the Edmonton EMS system. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
98.
Glossary     
  相似文献   
99.
Weighted voting classifiers considered in this paper consist of N units each providing individual classification decisions. The entire system output is based on tallying the weighted votes for each decision and choosing the one which has total support weight exceeding a certain threshold. Each individual unit may abstain from voting. The entire system may also abstain from voting if no decision support weight exceeds the threshold. Existing methods of evaluating the reliability of weighted voting systems can be applied to limited special cases of these systems and impose some restrictions on their parameters. In this paper a universal generating function method is suggested which allows the reliability of weighted voting classifiers to be exactly evaluated without imposing constraints on unit weights. Based on this method, the classifier reliability is determined as a function of a threshold factor, and a procedure is suggested for finding the threshold which minimizes the cost of damage caused by classifier failures (misclassification and abstention may have different price.) Dynamic and static threshold voting rules are considered and compared. A method of analyzing the influence of units' availability on the entire classifier reliability is suggested, and illustrative examples are presented. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 322–344, 2003.  相似文献   
100.
We study the environmental regulation of industrial activities that are organized as projects. Applications arise in construction, ship and aircraft building, and film making, among other industries. Relative to manufacturing, environmental regulation is different in project‐based industries, due to the uniqueness and geographical diversity of projects, and a lack of product takeback programs. Because the amount of waste and pollution generated by project companies can be large, regulators need environmental policies to ensure reduction of waste and pollution. We consider a regulator who attempts to maximize social welfare. We model this problem as a bilevel nonlinear program. The upper level regulator specifies waste reduction targets, which the lower level project companies meet using waste stream reduction and remediation of pollution, while attempting to control their project costs. We find that high waste diversion targets lead to outcomes with little pollution, but excessive project costs and only modest waste stream reduction. Projects that have lower task precedence density, or that have pollutants with different environmental impacts, show larger increases in project cost and time resulting from regulation. We describe a subsidy for waste stream reduction that coordinates the system, and we estimate the value of coordination. We also describe a bonus that encourages truthful reporting by project companies, and evaluate the relative cost and effectiveness of the subsidy and the bonus. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 228–247, 2015  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号